banner

Blog

Oct 16, 2024

Sustainable wastewater management through nitrogen-cycling microorganisms | Nature Water

Nature Water (2024)Cite this article

3 Altmetric

Metrics details

Nitrogen-cycling microorganisms play essential roles in biological wastewater treatment, where nitrogen is removed with substantial energy and chemical consumption and greenhouse gas emissions. The discoveries of new nitrogen-cycling microorganisms paved the way for a remarkable paradigm shift from energy-negative and carbon-positive to energy-positive and carbon-neutral wastewater management. This Review reflects on the trajectory of these microbial discoveries and summarizes the technological progress enabled by them thus far. By bridging the gap between environmental microbiologists and water engineers, who are both interested in these new nitrogen-cycling microorganisms but with different focuses and expertise, this Review acknowledges the challenges encountered and illuminates the exciting future ahead. The continued close collaboration between scientists and engineers will keep redefining the landscape of wastewater management.

This is a preview of subscription content, access via your institution

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Kuypers, M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

Article CAS PubMed Google Scholar

Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

Article CAS PubMed Google Scholar

Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B 368, 20130164 (2013).

Article PubMed PubMed Central Google Scholar

Munasinghe-Arachchige, S. P. & Nirmalakhandan, N. Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge. Environ. Sci. Technol. Lett. 7, 450–459 (2020).

Article CAS Google Scholar

Wuhrmann, K. Nitrogen removal in sewage treatment processes: with 9 figures in the text and on 2 folders. Int. Ver. Theor. Angew. Limnol. 15, 580–596 (1964).

CAS Google Scholar

Ludzack, F. & Ettinger, M. Controlling operation to minimize activated sludge effluent nitrogen. J. Water Pollut. Control Fed. 34, 920–931 (1962).

CAS Google Scholar

Treusch, A. H. et al. Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985–1995 (2005).

Article CAS PubMed Google Scholar

Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

Article CAS PubMed Google Scholar

Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

Article PubMed Google Scholar

Qin, W. et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 14, 2595–2609 (2020).

Article CAS PubMed PubMed Central Google Scholar

Könneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl Acad. Sci. USA 111, 8239–8244 (2014).

Article PubMed PubMed Central Google Scholar

Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).

Article CAS PubMed Google Scholar

Martens-Habbena, W., Berube, P. M., Urakawa, H., José, R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).

Article CAS PubMed Google Scholar

Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G. & Stein, L. Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J 10, 1836–1845 (2016).

Article CAS PubMed PubMed Central Google Scholar

Carini, P., Dupont, C. L. & Santoro, A. E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ. Microbiol. 20, 2112–2124 (2018).

Article CAS PubMed Google Scholar

Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl Acad. Sci. USA 107, 8818–8823 (2010).

Article CAS PubMed PubMed Central Google Scholar

Stein, L. Y. et al. Comment on “A critical review on nitrous oxide production by ammonia-oxidizing archaea” by Lan Wu, Xueming Chen, Wei Wei, Yiwen Liu, Dongbo Wang, and Bing-Jie Ni. Environ. Sci. Technol. 55, 797–798 (2020).

Article PubMed Google Scholar

Stieglmeier, M. et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146 (2014).

Article CAS PubMed PubMed Central Google Scholar

Jung, M.-Y. et al. Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. ISME J. 13, 2633–2638 (2019).

Article CAS PubMed PubMed Central Google Scholar

Wan, X. S. et al. Pathways of N2O production by marine ammonia-oxidizing archaea determined from dual-isotope labeling. Proc. Natl Acad. Sci. USA 120, e2220697120 (2023).

Article CAS PubMed PubMed Central Google Scholar

Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification? Trends Microbiol 14, 213–219 (2006).

Article CAS PubMed Google Scholar

Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

Article CAS PubMed PubMed Central Google Scholar

van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

Article PubMed PubMed Central Google Scholar

Palomo, A. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox. Nitrospira. ISME J. 12, 1779–1793 (2018).

Article PubMed Google Scholar

Kits, K. D. et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat. Commun. 10, 1836 (2019).

Article PubMed PubMed Central Google Scholar

Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

Article CAS PubMed PubMed Central Google Scholar

Sakoula, D. et al. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. ISME J. 15, 1010–1024 (2021).

Article CAS PubMed Google Scholar

Fumasoli, A., Morgenroth, E. & Udert, K. M. Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Res 83, 161–170 (2015).

Article CAS PubMed Google Scholar

Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11, 1130–1141 (2017).

Article CAS PubMed PubMed Central Google Scholar

Picone, N. et al. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. ISME J. 15, 1150–1164 (2021).

Article CAS PubMed Google Scholar

Wang, Z. et al. Robust nitritation sustained by acid-tolerant ammonia-oxidizing bacteria. Environ. Sci. Technol. 55, 2048–2056 (2021).

Article CAS PubMed Google Scholar

Li, J. et al. Achieving stable partial nitritation in an acidic nitrifying bioreactor. Environ. Sci. Technol. 54, 456–463 (2019).

Article PubMed Google Scholar

Fumasoli, A. et al. Growth of Nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environ. Sci. Technol. 51, 6857–6866 (2017).

Article CAS PubMed PubMed Central Google Scholar

Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343 (2011).

Article CAS PubMed PubMed Central Google Scholar

Wang, Z. et al. Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer ‘Candidatus Nitrosoglobus’. Water Res 196, 117026 (2021).

Article CAS PubMed Google Scholar

Ni, G. et al. Metabolic interactions of a minimal bacterial consortium drive robust nitritation at acidic pH. Preprint at BioRxiv https://doi.org/10.1101/2023.10.29.564480 (2023).

Blum, J. M. et al. The pH dependency of N‐converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ. Microbiol. 20, 1623–1640 (2018).

Article PubMed Google Scholar

Su, Q., Domingo-Félez, C., Jensen, M. M. & Smets, B. F. Abiotic nitrous oxide (N2O) production is strongly pH dependent, but contributes little to overall N2O emissions in biological nitrogen removal systems. Environ. Sci. Technol. 53, 3508–3516 (2019).

Article CAS PubMed Google Scholar

Kits, K. D., Klotz, M. G. & Stein, L. Y. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ. Microbiol. 17, 3219–3232 (2015).

Article CAS PubMed Google Scholar

Poret-Peterson, A. T., Graham, J. E., Gulledge, J. & Klotz, M. G. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J 2, 1213–1220 (2008).

Article CAS PubMed Google Scholar

Daebeler, A. et al. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. ISME J. 14, 2967–2979 (2020).

Article CAS PubMed PubMed Central Google Scholar

Hankinson, T. & Schmidt, E. An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Appl. Environ. Microb. 54, 1536–1540 (1988).

Article CAS Google Scholar

Laloo, A. E. Mechanism of Action of Free Nitrous Acid (FNA) on Nitrifiers. PhD Thesis, Univ. Queensland (2019).

Wu, M. R. et al. Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N2 with a previously unknown pathway. Environ. Microbiol. 23, 6965–6980 (2021).

Article CAS PubMed Google Scholar

Lenferink, W. B., Bakken, L. R., Jetten, M. S. M., van Kessel, M. A. H. J. & Lücker, S. Hydroxylamine production by Alcaligenes faecalis challenges the paradigm of heterotrophic nitrification. Sci. Adv 10, eadl3587 (2024).

Article CAS PubMed PubMed Central Google Scholar

Mulder, A., Vandegraaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol. Ecol 16, 177–183 (1995).

Article CAS Google Scholar

Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

Article CAS PubMed Google Scholar

Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H. & Okabe, S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by ‘Candidatus Brocadia sinica’. Environ. Microbiol. 18, 3133–3143 (2016).

Article CAS PubMed Google Scholar

Lawson, C. E. et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 15416 (2017).

Article CAS PubMed PubMed Central Google Scholar

Li, J., Liu, T., McIlroy, S. J., Tyson, G. W. & Guo, J. Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings. ISME Commun 3, 39 (2023).

Article CAS PubMed PubMed Central Google Scholar

Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37, 428–461 (2013).

Article CAS PubMed Google Scholar

Dietl, A. et al. The inner workings of the hydrazine synthase multiprotein complex. Nature 527, 394–397 (2015).

Article CAS PubMed Google Scholar

Shaw, D. R. et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat. Commun. 11, 2058 (2020).

Article CAS PubMed PubMed Central Google Scholar

Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794 (2006).

Article PubMed Google Scholar

Clément, J.-C., Shrestha, J., Ehrenfeld, J. G. & Jaffé, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem. 37, 2323–2328 (2005).

Article Google Scholar

Ding, L.-J., An, X.-L., Li, S., Zhang, G.-L. & Zhu, Y.-G. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ. Sci. Technol. 48, 10641–10647 (2014).

Article CAS PubMed Google Scholar

Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 5, 538–541 (2012).

Article CAS Google Scholar

Huang, S. & Jaffé, P. R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 13, e0194007 (2018).

Article PubMed PubMed Central Google Scholar

Jaffé, P. R. et al. Defluorination of PFAS by Acidimicrobium sp. strain A6 and potential applications for remediation. Method Enzymol. 696, 287–320 (2024).

Article Google Scholar

Liu, T., Chen, D., Li, X. & Li, F. Microbially mediated coupling of nitrate reduction and Fe (II) oxidation under anoxic conditions. FEMS Microbiol. Ecol 95, fiz030 (2019).

Article CAS PubMed Google Scholar

Zhang, X., Li, A., Szewzyk, U. & Ma, F. Improvement of biological nitrogen removal with nitrate-dependent Fe (II) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment. Bioresour. Technol. 219, 624–631 (2016).

Article CAS PubMed Google Scholar

Muyzer, G., Kuenen, J. G. & Robertson, L. A. in The Prokaryotes Prokaryotic Physiology and Biochemistry (eds Rosenberg, E. et al.) 555–588 (2013).

Szekeres, S., Kiss, I., Kalman, M. & Soares, M. I. M. Microbial population in a hydrogen-dependent denitrification reactor. Water Res 36, 4088–4094 (2002).

Article CAS PubMed Google Scholar

Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

Article CAS PubMed Google Scholar

Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

Article CAS PubMed Google Scholar

Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

Article CAS PubMed Google Scholar

Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

Article CAS PubMed PubMed Central Google Scholar

Yao, X. et al. Methane-dependent complete denitrification by a single Methylomirabilis bacterium. Nat. Microbiol. 9, 464–476 (2024).

Article PubMed Google Scholar

Wu, M. et al. Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia. Nat. Commun. 13, 6115 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wu, M. et al. Nitrate-driven anaerobic oxidation of ethane and butane by bacteria. ISME J 18, wrad011 (2024).

Article PubMed PubMed Central Google Scholar

Garrido-Amador, P. et al. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat. Microbiol. 8, 1574–1586 (2023).

Article CAS PubMed PubMed Central Google Scholar

Conthe, M. et al. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. ISME J. 12, 1142–1153 (2018).

Article CAS PubMed PubMed Central Google Scholar

Yoon, S., Nissen, S., Park, D., Sanford, R. A. & Löffler, F. E. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I nosZ from those harboring clade II nosZ. Appl. Environ. Microb. 82, 3793–3800 (2016).

Article CAS Google Scholar

Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7, 417–426 (2013).

Article CAS PubMed Google Scholar

Han, P. et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. Water Res. 190, 116728 (2021).

Article CAS PubMed Google Scholar

Conthe, M. et al. Denitrification as an N2O sink. Water Res. 151, 381–387 (2019).

Article CAS PubMed Google Scholar

Valk, L. C. et al. Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. Water Res. 219, 118563 (2022).

Article CAS PubMed Google Scholar

Qi, C. et al. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: genomic and biokinetic insights. Water Res. 209, 117910 (2022).

Article CAS PubMed Google Scholar

Suenaga, T. et al. Enrichment, isolation, and characterization of high-affinity N2O-reducing bacteria in a gas-permeable membrane reactor. Environ. Sci. Technol. 53, 12101–12112 (2019).

Article CAS PubMed Google Scholar

Suenaga, T. et al. Immobilization of Azospira sp. strain I13 by gel entrapment for mitigation of N2O from biological wastewater treatment plants: biokinetic characterization and modeling. J. Biosci. Bioeng. 126, 213–219 (2018).

Article CAS PubMed Google Scholar

Liu, T. et al. Simultaneous removal of dissolved methane and nitrogen from synthetic mainstream anaerobic effluent. Environ. Sci. Technol. 54, 7629–7638 (2020).

Article CAS PubMed Google Scholar

Liu, T., Hu, S., Yuan, Z. & Guo, J. Simultaneous dissolved methane and nitrogen removal from low-strength wastewater using anaerobic granule-based sequencing batch reactor. Water Res 242, 120194 (2023).

Article CAS PubMed Google Scholar

Silva-Teira, A., Sanchez, A., Buntner, D., Rodriguez-Hernandez, L. & Garrido, J. M. Removal of dissolved methane and nitrogen from anaerobically treated effluents at low temperature by MBR post-treatment. Chem. Eng. J. 326, 970–979 (2017).

Article CAS Google Scholar

Chen, X. et al. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: a model-based investigation of feasibility. Water Res. 85, 295–303 (2015).

Article CAS PubMed Google Scholar

Lu, Y. et al. Coupling partial nitritation, anammox and n-DAMO in a membrane aerated biofilm reactor for simultaneous dissolved methane and nitrogen removal. Water Res. 255, 121511 (2024).

Article CAS PubMed Google Scholar

Tang, C. J. et al. Performance of high-loaded anammox UASB reactors containing granular sludge. Water Res. 45, 135–144 (2011).

Article CAS PubMed Google Scholar

Fan, S.-Q. et al. Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox: from proof-of-concept to high rate nitrogen removal. Environ. Sci. Technol. 54, 297–305 (2019).

Article PubMed Google Scholar

Niu, C. et al. Superior mainstream partial nitritation in an acidic membrane-aerated biofilm reactor. Water Res. 257, 121692 (2024).

Article CAS PubMed Google Scholar

Cao, Y., van Loosdrecht, M. C. M. & Daigger, G. T. Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 101, 1365–1383 (2017).

Article CAS PubMed Google Scholar

Wang, Z. et al. Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Res. 194, 116962 (2021).

Article CAS PubMed Google Scholar

Zhang, L. et al. Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Res. 149, 406–413 (2019).

Article CAS PubMed Google Scholar

Hu, Z. et al. Adaptation of anammox process for nitrogen removal from acidic nitritation effluent in a low pH moving bed biofilm reactor. Water Res. 243, 120370 (2023).

Article CAS PubMed Google Scholar

Xia, J., Ni, G., Wang, Y., Zheng, M. & Hu, S. Mycolicibacter acidiphilus sp. nov., an extremely acid-tolerant member of the genus Mycolicibacter. Int. J. Syst. Evol. Micr 72, 005419 (2022).

Article CAS Google Scholar

Godfrey, B. et al. Co-immobilization of AOA strains with anammox bacteria in three different synthetic bio-granules maintained under two substrate-level conditions. Chemosphere 342, 140192 (2023).

Article CAS PubMed Google Scholar

Li, B. et al. Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox. Water Res. 242, 120303 (2023).

Article CAS PubMed Google Scholar

Shao, Y.-H. & Wu, J.-H. Comammox Nitrospira species dominate in an efficient partial nitrification–anammox bioreactor for treating ammonium at low loadings. Environ. Sci. Technol. 55, 2087–2098 (2021).

Article CAS PubMed Google Scholar

Lim, Z. K. et al. Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): first demonstration with real wastewater. Water Res. 194, 116912 (2021).

Article CAS PubMed Google Scholar

Deng, Y.-F. et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: a review. Water Res. 224, 119051 (2022).

Article CAS PubMed Google Scholar

Deng, Y.-F. et al. Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment. Water Res. 193, 116905 (2021).

Article CAS PubMed Google Scholar

Feng, F. et al. Quantification of enhanced nitrogen removal pathways of pyrite interaction with anammox sludge system. Chem. Eng. J. 459, 141519 (2023).

Article CAS Google Scholar

Yang, Y., Xiao, C., Lu, J. & Zhang, Y. Fe (III)/Fe (II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor. Water Res 172, 115528 (2020).

Article CAS PubMed Google Scholar

Liu, W. et al. Temperature-resilient superior performances by coupling partial nitritation/anammox and iron-based denitrification with granular formation. Water Res. 254, 121424 (2024).

Article CAS PubMed Google Scholar

Men, Y. et al. Biotransformation of two pharmaceuticals by the ammonia-oxidizing Archaeon Nitrososphaera gargensis. Environ. Sci. Technol. 50, 4682–4692 (2016).

Article CAS PubMed PubMed Central Google Scholar

Han, P. et al. Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environ. Sci. Technol. 53, 8695–8705 (2019).

Article CAS PubMed Google Scholar

Martínez-Quintela, M. et al. Cometabolic removal of organic micropollutants by enriched nitrite-dependent anaerobic methane oxidizing cultures. J. Hazard. Mater. 402, 123450 (2021).

Article PubMed Google Scholar

Huang, J. et al. Unraveling pharmaceuticals removal in a sulfur-driven autotrophic denitrification process: performance, kinetics and mechanisms. Chin. Chem. Lett. 34, 107433 (2023).

Article CAS Google Scholar

Cheng, Z. et al. Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: kinetics, transformation pathways, and toxicity assessment. Water Res. 189, 116629 (2021).

Article CAS PubMed Google Scholar

Liu, W. et al. Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. J. Hazard. Mater. 438, 129535 (2022).

Article CAS PubMed Google Scholar

Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).

Article CAS PubMed Google Scholar

Zhang, J. et al. Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Res. 197, 117077 (2021).

Article CAS PubMed Google Scholar

Larsen, T. A., Riechmann, M. E. & Udert, K. M. State of the art of urine treatment technologies: a critical review. Water Res. X 13, 100114 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zuo, Z. et al. The advantage of a two-stage nitrification method for fertilizer recovery from human urine. Water Res. 235, 119932 (2023).

Article CAS PubMed Google Scholar

Larsen, T. A., Gruendl, H. & Binz, C. The potential contribution of urine source separation to the SDG agenda—a review of the progress so far and future development options. Environ. Sci. Water Res. Technol. 7, 1161–1176 (2021).

Article CAS Google Scholar

Zuo, Z., Zheng, M., Liu, T., Peng, Y. & Yuan, Z. New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management. Front. Environ. Sci. Eng. 18, 26 (2024).

Article CAS Google Scholar

Scherson, Y. D. et al. Nitrogen removal with energy recovery through N2O decomposition. Energy Environ. Sci. 6, 241–248 (2013).

Article CAS Google Scholar

Oshiki, M. et al. Biosynthesis of hydrazine from ammonium and hydroxylamine using an anaerobic ammonium oxidizing bacterium. Biotechnol. Lett. 42, 979–985 (2020).

Article CAS PubMed Google Scholar

Straka, L. L., Meinhardt, K. A., Bollmann, A., Stahl, D. A. & Winkler, M.-K. Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. ISME J 13, 1997–2004 (2019).

Article CAS PubMed PubMed Central Google Scholar

Belser, L. & Schmidt, E. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers. FEMS Microbiol. Lett 7, 213–216 (1980).

Article CAS Google Scholar

Boon, B. & Laudelout, H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J 85, 440 (1962).

Article CAS PubMed PubMed Central Google Scholar

Winkler, M. K. et al. Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor. Water Res. 73, 323–331 (2015).

Article CAS PubMed Google Scholar

He, L. et al. A methanotrophic bacterium to enable methane removal for climate mitigation. Proc. Natl Acad. Sci. USA 120, e2310046120 (2023).

Article CAS PubMed PubMed Central Google Scholar

Zhao, J. et al. Selective enrichment of comammox Nitrospira in a moving bed biofilm reactor with sufficient oxygen supply. Environ. Sci. Technol. 56, 13338–13346 (2022).

Article CAS PubMed Google Scholar

Cotto, I. et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 169, 115268 (2020).

Article CAS PubMed Google Scholar

Liu, C. et al. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Res. 194, 116963 (2021).

Article CAS PubMed Google Scholar

Liu, T. et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor. Environ. Sci. Technol. 54, 3012–3021 (2020).

Article CAS PubMed Google Scholar

Li, J. et al. Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor. ISME Commun. 1, 7 (2021).

Article PubMed PubMed Central Google Scholar

Allegue, T., Arias, A., Fernandez-Gonzalez, N., Omil, F. & Garrido, J. M. Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor. Chem. Eng. J. 347, 721–730 (2018).

Article CAS Google Scholar

Lotti, T., Kleerebezem, R., Abelleira-Pereira, J., Abbas, B. & van Loosdrecht, M. Faster through training: the anammox case. Water Res. 81, 261–268 (2015).

Article CAS PubMed Google Scholar

Zhang, L. et al. Maximum specific growth rate of anammox bacteria revisited. Water Res. 116, 296–303 (2017).

Article CAS PubMed Google Scholar

Guerrero-Cruz, S. et al. Key physiology of a nitrite-dependent methane-oxidizing enrichment culture. Appl. Environ. Microb. 85, 00124–00119 (2019).

Article Google Scholar

Kartal, B. et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9, 635–642 (2007).

Article CAS PubMed Google Scholar

Guven, D. et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microb. 71, 1066–1071 (2005).

Article Google Scholar

Lawson, C. E. et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 15, 673–687 (2021).

Article CAS PubMed Google Scholar

Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl Acad. Sci. USA 108, 8420–8425 (2011).

Article CAS PubMed PubMed Central Google Scholar

Xu, S. et al. Survival strategy of comammox bacteria in a wastewater nutrient removal system with sludge fermentation liquid as additional carbon source. Sci. Total Environ. 802, 149862 (2022).

Article CAS PubMed Google Scholar

Kim, J.-G. et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc. Natl Acad. Sci. USA 113, 7888–7893 (2016).

Article CAS PubMed PubMed Central Google Scholar

Wett, B. et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Sci. Technol. 68, 283–289 (2013).

Article CAS PubMed Google Scholar

Lackner, S., Welker, S., Gilbert, E. M. & Horn, H. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater. Water Sci. Technol 72, 1358–1363 (2015).

Article CAS PubMed Google Scholar

Jenni, S., Vlaeminck, S. E., Morgenroth, E. & Udert, K. M. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Res. 49, 316–326 (2014).

Article CAS PubMed Google Scholar

Liu, T. et al. Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor. Chem. Eng. J. 327, 973–981 (2017).

Article CAS Google Scholar

Du, R. et al. Partial denitrification providing nitrite: opportunities of extending application for anammox. Environ. Int. 131, 105001 (2019).

Article CAS PubMed Google Scholar

Huang, T. et al. Comammox Nitrospira bacteria are dominant ammonia oxidizers in mainstream nitrification bioreactors emended with sponge carriers. Environ. Sci. Technol. 56, 12584–12591 (2022).

Article CAS PubMed Google Scholar

Wang, Y. et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environ. Sci. Technol. 55, 2662–2673 (2021).

Article CAS PubMed Google Scholar

Bernhard, A. E. et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289 (2010).

Article CAS PubMed Google Scholar

Lackner, S. et al. Full-scale partial nitritation/anammox experiences–an application survey. Water Res. 55, 292–303 (2014).

Article CAS PubMed Google Scholar

Li, J. et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. Water Res. 160, 178–187 (2019).

Article CAS PubMed Google Scholar

Héder, M. From NASA to EU: the evolution of the TRL scale in public sector innovation. Innov. J. 22, 1–23 (2017).

Google Scholar

Jin, R.-C., Yang, G.-F., Yu, J.-J. & Zheng, P. The inhibition of the anammox process: a review. Chem. Eng. J. 197, 67–79 (2012).

Article CAS Google Scholar

Huang, D.-Q., Fu, J.-J., Li, Z.-Y., Fan, N.-S. & Jin, R.-C. Inhibition of wastewater pollutants on the anammox process: a review. Sci. Total Environ. 803, 150009 (2022).

Article CAS PubMed Google Scholar

Zhang, Y. et al. Hot spring distribution and survival mechanisms of thermophilic comammox. Nitrospira. ISME J. 17, 993–1003 (2023).

Article CAS PubMed Google Scholar

Vandekerckhove, T. G., Props, R., Carvajal-Arroyo, J. M., Boon, N. & Vlaeminck, S. E. Adaptation and characterization of thermophilic anammox in bioreactors. Water Res. 172, 115462 (2020).

Article CAS PubMed Google Scholar

Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus. Nitrospira. Proc. Natl Acad. Sci. USA 112, 11371–11376 (2015).

Article CAS PubMed Google Scholar

Palatinszky, M. et al. Cyanate as an energy source for nitrifiers. Nature 524, 105–108 (2015).

Article CAS PubMed PubMed Central Google Scholar

Koch, H. et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054 (2014).

Article CAS PubMed Google Scholar

Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).

Article CAS PubMed Google Scholar

Wang, Q. & He, J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. Water Res. 185, 116300 (2020).

Article CAS PubMed Google Scholar

Versantvoort, W. et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proc. Natl Acad. Sci. USA 117, 24459–24463 (2020).

Article CAS PubMed PubMed Central Google Scholar

Huang, S. & Jaffé, P. R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12, 769–779 (2015).

Article Google Scholar

Van Den Berg, E. M., Van Dongen, U., Abbas, B. & Van Loosdrecht, M. C. Enrichment of DNRA bacteria in a continuous culture. ISME J 9, 2153–2161 (2015).

Article PubMed PubMed Central Google Scholar

Kraft, B. et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).

Article CAS PubMed Google Scholar

Vilardi, K. et al. Co-occurrence and cooperation between comammox and anammox bacteria in a full-scale attached growth municipal wastewater treatment process. Environ. Sci. Technol. 57, 5013–5023 (2023).

Article CAS PubMed PubMed Central Google Scholar

Gottshall, E. Y. et al. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. Water Res. 202, 117426 (2021).

Article CAS PubMed Google Scholar

Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).

Article PubMed PubMed Central Google Scholar

Annavajhala, M. K., Kapoor, V., Santo-Domingo, J. & Chandran, K. Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environ. Sci. Tech. Lett. 5, 110–116 (2018).

Article CAS Google Scholar

Roots, P. et al. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Res. 157, 396–405 (2019).

Article CAS PubMed Google Scholar

Yang, Y. et al. Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems. Mbio 11, e03175–03119 (2020).

Article PubMed PubMed Central Google Scholar

Chao, Y., Mao, Y., Yu, K. & Zhang, T. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl. Microbiol. Biot. 100, 8225–8237 (2016).

Article CAS Google Scholar

Zhou, L.-J. et al. Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Res. 159, 444–453 (2019).

Article CAS PubMed Google Scholar

Yan, J. et al. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory‐scale model system. Environ. Microbiol. 14, 3146–3158 (2012).

Article CAS PubMed PubMed Central Google Scholar

Landreau, M., Byson, S. J., You, H., Stahl, D. A. & Winkler, M. K. Effective nitrogen removal from ammonium-depleted wastewater by partial nitritation and anammox immobilized in granular and thin layer gel carriers. Water Res. 183, 116078 (2020).

Article CAS PubMed Google Scholar

Zhang, T. et al. Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J. Appl. Microbiol 107, 970–977 (2009).

Article CAS PubMed Google Scholar

Wells, G. F. et al. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11, 2310–2328 (2009).

Article CAS PubMed Google Scholar

Mußmann, M. et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc. Natl Acad. Sci. USA 108, 16771–16776 (2011).

Article PubMed PubMed Central Google Scholar

Sauder, L. A., Peterse, F., Schouten, S. & Neufeld, J. D. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environ. Microbiol. 14, 2589–2600 (2012).

Article CAS PubMed PubMed Central Google Scholar

DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

Article CAS PubMed PubMed Central Google Scholar

Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

Article CAS PubMed Google Scholar

Faust, V. et al. Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH. Water Res. X 17, 100157 (2022).

Article CAS PubMed PubMed Central Google Scholar

Hu, Z., Liu, T., Wang, Z., Meng, J. & Zheng, M. Toward energy neutrality: novel wastewater treatment incorporating acidophilic ammonia oxidation. Environ. Sci. Technol. 57, 4522–4532 (2023).

Article CAS PubMed PubMed Central Google Scholar

Fumasoli, A., Etter, B., Sterkele, B., Morgenroth, E. & Udert, K. M. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Sci. Technol 73, 215–222 (2016).

Article CAS PubMed Google Scholar

Hayatsu, M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil Sci. Plant Nutr. 39, 219–226 (1993).

Article CAS Google Scholar

Liu, T., Hu, S., Yuan, Z. & Guo, J. High-level nitrogen removal by simultaneous partial nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation. Water Res. 166, 115057 (2019).

Article CAS PubMed Google Scholar

Shi, Y. et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ. Sci. Technol. 47, 11577–11583 (2013).

Article CAS PubMed Google Scholar

Islas-Lima, S., Thalasso, F. & Gomez-Hernandez, J. Evidence of anoxic methane oxidation coupled to denitrification. Water Res. 38, 13–16 (2004).

Article CAS PubMed Google Scholar

Mason, I. Methane as a carbon source in biological denitrification. J. Water Pollut. Control Fed. 49, 855–857 (1977).

CAS Google Scholar

Thalasso, F., Vallecillo, A., GarciaEncina, P. & FdzPolanco, F. The use of methane as a sole carbon source for wastewater denitrification. Water Res. 31, 55–60 (1997).

Article CAS Google Scholar

Eisentraeger, A., Klag, P., Vansbotter, B., Heymann, E. & Dott, W. Denitrification of groundwater with methane as sole hydrogen donor. Water Res. 35, 2261–2267 (2001).

Article CAS PubMed Google Scholar

Le, T. et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox. Water Environ. Res. 91, 185–197 (2019).

Article CAS PubMed Google Scholar

Cao, Y. et al. The mainstream autotrophic nitrogen removal in the largest full scale activated sludge process in Singapore: process analysis. WEF/IWA Nutrient Removal and Recovery 2013: Trends in Resource Recovery and Use 28–31 (2013).

Third, K. A., Sliekers, A. O., Kuenen, J. G. & Jetten, M. S. M. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24, 588–596 (2001).

Article CAS PubMed Google Scholar

van Dongen, U., Jetten, M. S. & van Loosdrecht, M. C. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153–160 (2001).

Article PubMed Google Scholar

Broda, E. Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491–493 (1977).

Article CAS PubMed Google Scholar

Winogradsky, S. Recherches sur les organisms de la nitrification. Ann. Inst. Pasteur (Paris) 4, 213–231 (1890).

Google Scholar

Gayon, U. & Dupetit, G. Recherches sur la reduction des nitrates par les infiniment petits. Mem. Soc. Sci. Phys. Nat. Bord. 3, 201–307 (1886).

Google Scholar

Larsen, T., Udert, K. & Lienert, J. Source Separation and Decentralization for Wastewater Management (IWA Publishing, 2013).

Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

Article Google Scholar

Sigurdarson, J. J., Svane, S. & Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Biotechnol 17, 241–258 (2018).

Article CAS Google Scholar

Qin, W. et al. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nat. Microbiol. 9, 524–536 (2024).

Article CAS PubMed Google Scholar

Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24, 699–712 (2016).

Article CAS PubMed PubMed Central Google Scholar

Su, Z., Liu, T., Guo, J. & Zheng, M. Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges. Environ. Sci. Technol. 57, 12557–12570 (2023).

Article CAS PubMed PubMed Central Google Scholar

IPCC Climate Change 2021: The Physical Science Basis (eds et al.) (Cambridge Univ. Press, 2023).

Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

Article CAS PubMed Google Scholar

Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P. & Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe—results from the GAINS model. Environ. Res. Commun. 2, 025004 (2020).

Article Google Scholar

Water Utilities Unite to Cut Emissions in Race to Zero (Water Sevices Association of Australia, 2021); https://wsaa.stage.wsaa.asn.au/media/water-utilities-unite-cut-emissions-race-zero

Kitamori, K., Manders, T., Dellink, R. & Tabeau, A. OECD Environmental Outlook to 2050: The Consequences of Inaction Report no. 9264122168 (OECD, 2012).

Molinos-Senante, M., Hernández-Sancho, F. & Sala-Garrido, R. Economic feasibility study for wastewater treatment: a cost–benefit analysis. Sci. Total Environ. 408, 4396–4402 (2010).

Article CAS PubMed Google Scholar

Beckinghausen, A., Odlare, M., Thorin, E. & Schwede, S. From removal to recovery: an evaluation of nitrogen recovery techniques from wastewater. Appl. Energy 263, 114616 (2020).

Article CAS Google Scholar

Download references

This work is supported by the Australian Research Council Linkage Project (LP220200963) and Discovery Project (DP230101340). T.L. is a recipient of the Australian Research Council DECRA Fellowship (DE220101310) and Hong Kong Research Grants Council’s Early Career Scheme (PolyU 25238324). H.D. and M.Z. are the recipients of the Australian Research Council Industry Fellowship (IE230100422, IE230100245). H.D. acknowledges funding from the Comammox Research Platform of the University of Vienna and the Austrian Science Fund, Cluster of Excellence COE7. S.L. acknowledges funding from the Dutch Research Council (NWO) grant 016.Vidi.189.050. Z.Y. is a Global STEM Professor jointly funded by the Innovation, Technology and Industry Bureau and Education Bureau of the Government of the Hong Kong Special Administrative Region and acknowledges financial support from the Hong Kong Jockey Club for the JC STEM Lab of Sustainable Urban Water Management.

Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia

Tao Liu, Haoran Duan & Jianhua Guo

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Tao Liu

Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia

Haoran Duan & Min Zheng

Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands

Sebastian Lücker

Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria

Holger Daims

The Comammox Research Platform, University of Vienna, Vienna, Austria

Holger Daims

School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Zhiguo Yuan

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

You can also search for this author in PubMed Google Scholar

Correspondence to Jianhua Guo.

The authors declare no competing interests.

Nature Water thanks Dario Rangel Shaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

Liu, T., Duan, H., Lücker, S. et al. Sustainable wastewater management through nitrogen-cycling microorganisms. Nat Water (2024). https://doi.org/10.1038/s44221-024-00307-5

Download citation

Received: 27 January 2023

Accepted: 06 August 2024

Published: 14 October 2024

DOI: https://doi.org/10.1038/s44221-024-00307-5

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

SHARE